
Open Research Software

Liam Keegan, SSC

Best practices for reliable, maintainable software



Scientific Software Center

● Team of Research Software Engineers (currently 3)

● Offer researchers at Heidelberg University

○ Large scale software development

○ Small scale software development

○ Consultation / advice

○ Teaching / training

● Our website / github page also offers

○ Coding guidelines

○ Template repositories

2

ssc.iwr.uni-heidelberg.de

github.com/ssciwr 

https://ssc.iwr.uni-heidelberg.de/
https://github.com/ssciwr


Research Software

● Is an increasingly vital part of scientific research

● Is not only code written by “real programmers”
○ Your Python data analysis script is also research software!

● Is an intrinsic part of reproducible science

For people to trust your research, they need to trust your software

● Needs to be open

● Needs to be reliable

● Needs to be maintainable

3



Best practices for reliable, maintainable software

● Open source development

● Version control

● Testing

● Documentation

● Continuous integration

● Community involvement

4



Open source development

5



Open source development

● Making your source code publicly available

○ e.g. GitHub, GitLab, Zenodo, Software Heritage

● Advantages

○ Makes it easier for people to reproduce your results

○ People can find mistakes and bugs

○ People can fix mistakes and bugs

○ People can offer suggestions, improvements

○ People can cite and use your work

○ Gives others confidence in the value of your code

6



Open source development example

7https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Version control

8



Version control

● Use a tool to track changes to your software

○ e.g. git, subversion, mercurial

● Advantages

○ Easily keep track of changes to the code

○ What changed, who changed it, when and why it changed

○ Easy to refer to specific commit, tag or version for reproducibility

○ Easy to undo or revert changes

○ Easy for multiple people to collaborate on the same code

○ Gives others confidence in the history of your code

9



Version control example

10https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Testing

11



Testing

● Write tests that check the software is working correctly

● Advantages

○ Ensure correctness of your code

○ Maintain correctness of your code

○ Find bugs earlier and more easily

○ Make changes or refactor code without fear

○ Easier for new contributors to make positive changes

○ Complement the documentation as examples of use

○ Gives others confidence in the correctness of your code

12



Types of tests

● Unit tests
○ Test a small, isolated part of code

● Integration / system tests
○ Test larger, connected parts of code

● Smoke tests
○ Sanity check: switch it on and off, is smoke coming out / did it crash?

● Regression tests
○ Test for a bug that was fixed to ensure it doesn’t come back

● Approval tests
○ Retro-fitting tests before making changes to legacy code

13



Testing example

14https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Documentation

15



Documentation

● Document how your code works and how to use it

● Advantages

○ Helps users understand how to use the code

○ Helps developers understand how to modify the code

○ Encourages people to learn about your code

○ Gives others confidence in the usability of your code

16



Types of Documentation

● Source code
○ Target audience is other humans, not the computer!

● Comments
○ For you and other developers

● API Documentation
○ Technical documentation for developers / power users

● User documentation
○ Documentation written for users

● Examples
○ Very helpful

17



Documentation example

18https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Continuous integration

19



Continuous integration

● Automatic checks before code changes are accepted

● Advantages

○ Ensure all tests pass before code is changed

○ Can automatically apply uniform formatting of the code

○ Can require that new code is covered by tests

○ Test the code on multiple platforms (e.g. Windows, Mac, Linux)

○ Can automatically deploy new releases of software

○ Helps others improve the quality of their proposed code changes

20



Continuous integration example

21https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Community involvement

22



Community involvement

● Enable people to contribute bug reports, feature requests and code

● Advantages

○ People can find mistakes and bugs

○ People can fix mistakes and bugs

○ People can improve the documentation

○ People can offer suggestions, improvements

○ People can help each other to use your code

○ More contributors can make a project more sustainable

○ Helps others to use and contribute to your work

23



Community involvement example

24https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Summary

25



Best practices for reliable, maintainable software

● Open source development

● Version control

● Testing

● Documentation

● Continuous Integration

● Community Involvement

26



Getting started

● Start from a template repository

● Basic project ready to go

○ Open source development

○ Version control

○ Testing

○ Documentation

○ Continuous Integration

○ Community Involvement

27

Basic C++ Project Template

github.com/ssciwr/cpp-project-template

Basic Python Project Template

github.com/ssciwr/python-project-template

Advanced C++ Project Template

github.com/ssciwr/cookiecutter-cpp-project

https://github.com/ssciwr/cpp-project-template
https://github.com/ssciwr/python-project-template
https://github.com/ssciwr/cookiecutter-cpp-project

