
Open Research Software

Liam Keegan, SSC

Best practices and tools for reliable, maintainable software

2024.06.19



Scientific Software Center

● Team of Research Software Engineers (currently 6)

● Offer researchers at Heidelberg University

○ Software development as a service

○ Consultation and advice

○ Teaching and training

● Our website / github page also offers

○ Coding guidelines

○ Template repositories

○ Slides and code samples from our courses

2

ssc.uni-heidelberg.de

github.com/ssciwr 

https://ssc.uni-heidelberg.de/
https://github.com/ssciwr


Research Software

● Is an increasingly vital part of scientific research

● Is an intrinsic part of reproducible science

● Is not only code written by “real programmers”
○ Your Python data analysis script is also research software!

For people to trust your research, they need to trust your software

● Needs to be open

● Needs to be reliable

● Needs to be maintainable

3



Best practices for reliable, maintainable software

● Open source development
● Version control
● Testing
● Documentation
● Continuous integration
● Community involvement

For each of these I will

● Describe what it is and what the benefits are
● Make some concrete recommendations
● Show an example of this from an open source library (pybind11)

4



Tools for writing reliable, maintainable software

● Integrated Development Environments (e.g. vscode, pycharm)
● AI code completion (e.g. copilot, intellicode)
● Generative AI (e.g. chatgpt, claude, gemini)

For each of these I will

● Describe what it is and what the benefits are
● Make some concrete recommendations
● Show an example of use

5



Open source development

6



Open source development

● Making your source code publicly available
○ e.g. GitHub, GitLab, Software Heritage, Zenodo

● With a suitable open source license

● Advantages
○ Makes it easier for people to reproduce your results

○ People can find mistakes and bugs

○ People can fix mistakes and bugs

○ People can offer suggestions, improvements

○ People can cite and use your work

○ Gives others confidence in the value of your code

7



Which platform to use?

● GitHub.com / GitLab.com / etc
○ Commercial git hosting with a (substantial) free tier of services

● Self-hosted gitlab / forgejo / etc
○ Your institute may offer self-hosted gitlab or other code hosting services

● Software Heritage
○ Public software archive, provides a SWHID for your code

● Zenodo
○ Public data archive, provides a DOI for your code

Recommendation:

○ Some form of git hosting + Software Heritage + Zenodo

8



Open source development example

9https://github.com/pybind/pybind11

https://github.com/pybind/pybind11/


Version control

10



Version control

● Use a tool to track changes to your software

○ e.g. git, subversion, mercurial

● Advantages

○ Easily keep track of changes to the code

○ What changed, who changed it, when and why it changed

○ Easy to refer to specific commit, tag or version for reproducibility

○ Easy to undo or revert changes

○ Easy for multiple people to collaborate on the same code

○ Gives others confidence in the history of your code

11



Which version control system to use?

● Git
○ The de-facto standard, now used by the vast majority of open source projects

● Workflows
○ There are many ways to use git, known as workflows

○ Centralized workflow, Feature branching, Forking workflow

○ git-flow, gitlab-flow, github-flow, …

Recommendation:

○ Git with a main branch

○ New code is developed on a new branch and then merged into main

12



Version control example

13https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Testing

14



Testing

● Write automated tests that check the software is working correctly

● Advantages

○ Ensure correctness of your code

○ Maintain correctness of your code

○ Find bugs earlier and more easily

○ Make changes or refactor code without fear

○ Easier for new contributors to make positive changes

○ Complement the documentation as examples of use

○ Gives others confidence in the correctness of your code

15



Types of tests

● Unit tests
○ Test a small, isolated part of code

● Integration / system tests
○ Test larger, connected parts of code

● Regression tests
○ Test for a bug that was fixed to ensure it doesn’t come back

● Approval tests
○ Retro-fitting tests before making changes to legacy code

Recommendation:

○ Write unit tests for new projects or new code in legacy projects

○ Write approval tests for legacy code which doesn’t have any tests

16



Testing example

17https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Documentation

18



Documentation

● Document how your code works and how to use it

● Advantages

○ Helps users understand how to use the code

○ Helps developers understand how to modify the code

○ Encourages people to learn about your code

○ Gives others confidence in the usability of your code

○ By writing it you can identify hard-to-use code that could be improved

19



Types of Documentation

● Source code
○ Target audience is other humans, not the computer!

● Comments
○ For you and other developers

● API Documentation
○ Technical documentation for developers / power users

● User documentation
○ Documentation written for users

● Examples
○ Very helpful

Recommendation:

○ Include your documentation in your git repository and update it alongside code changes

20



Documentation example

21https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Continuous integration

22



Continuous integration

● Automatic checks before code changes are accepted

● Advantages

○ Ensure all tests pass before code is changed

○ Can automatically apply uniform formatting of the code

○ Can automatically do static analysis to identify code smells or bugs

○ Can require that new code is covered by tests

○ Test the code on multiple platforms (e.g. Windows, Mac, Linux)

○ Can automatically deploy new releases of software

○ Helps others improve the quality of their proposed code changes

23



Types of continuous integration

● Integrated into git hosting service
○ GitHub Actions, GitLab CI/CD, …

● External services
○ Travis CI, Circle CI, …

● Self hosted
○ Jenkins, …

Recommendation:

○ Typically easiest to use the CI provided by your git hosting service

○ E.g. for code on GitHub use GitHub Actions

24



Continuous integration example

25https://github.com/pybind/pybind11/

https://github.com/pybind/pybind11/


Community involvement

26



Community involvement

● Enable people to contribute bug reports, feature requests and code

● Advantages

○ People can find mistakes and bugs

○ People can fix mistakes and bugs

○ People can improve the documentation

○ People can offer suggestions, improvements

○ People can help each other to use your code

○ More contributors can make a project more sustainable

○ Helps others to use and contribute to your work

27



Communication channels

● Issue trackers on git hosting service

● Public chat room / discussion board

● Mailing list

● Contact email for support / questions

● Wiki pages

Recommendation:

○ Use public issue trackers for all feedback / discussions / bugs / features

28



Community involvement example

29https://github.com/pybind/pybind11/issues

https://github.com/pybind/pybind11/issues


Community involvement example

30https://github.com/pybind/pybind11/discussions

https://github.com/pybind/pybind11/discussions


Integrated Development Environment

31



Integrated Development Environment (IDE)

The IDE is where you type your code, and can provide

● Syntax highlighting

● Code formatting

● Code completion

● Code refactoring

● Compiling, running and debugging

● Warnings about errors and issues

● Suggested improvements based on best practices

32



Which IDE to use?

● Jetbrains (PyCharm / CLion / etc)
○ Commercial, but students can get a free license

○ There is also a free community edition of PyCharm for Python coding

● Visual Studio Code
○ Free, open-source, widely used

● Many others available
○ Eclipse, Visual Studio (commercial), SublimeText, notepad++, vim

Recommendation:

○ VS Code or JetBrains

33



IDE example (Python code in PyCharm)

34



AI code completion

35



AI code completion

● Autocomplete (on steroids) for your IDE

● As you type it makes pretty good suggestions with surprisingly little input

● You can start writing a function and it will suggest the rest

● It can also generate documentation for a function

● It can write tests for a function

● It can also simplify or explain code

● Works especially well with commonly used or “boilerplate” code

36



Which AI code completion to use?

● IntelliCode
○ Free, included in VS Code

● GitHub Copilot
○ Commercial

○ But students can get a free GitHub PRO account which includes copilot

● Many others available
○ But the two above are probably the most widely used

Recommendation:

○ IntelliCode or Copilot

37



AI code completion examples (copilot/pycharm)

38

I started writing a function by typing “def rotate_vector”:



AI code completion examples (copilot/pycharm)

39

Then edited my text to “def rotate_3d_vector”:



Generative AI

40



Generative AI

● You can simply ask a chatbot to write your code for you

● The results are not perfect - but often pretty good!

● You can also iterate, asking for changes and improvements

● The kind of code you get depends on the kind of prompt you use

○ E.g. “Please write high quality code that follows best practices in software development.”

● Can be a good way to brainstorm alternative solutions

● Also very helpful when you are not an expert with the language you are using

● Your role here changes from writing code to reviewing code

41



Possible issues with generative AI

● Copyright issues

○ Was the training data copyrighted? Is your data copyrighted?

● Spaghetti code

○ Easy to quickly generate a lot of not-great code: makes your life harder later

● Subtly wrong code

○ They sometimes “hallucinate”, which is a polite word for lying convincingly to you

Recommendation:

○ Use with care!

42



Generative AI examples

43



Generative AI examples

44



Summary

45



For reliable, maintainable software

Follow best practices:

● Open source development
● Version control
● Testing
● Documentation
● Continuous integration
● Community involvement

46

Use good tools:

● Integrated Development Environment
● AI-powered autocomplete
● Generative AI (with care)



Getting started

● Start from a template repository

● Basic project ready to go

○ Open source development

○ Version control

○ Testing

○ Documentation

○ Continuous integration

○ Community involvement

47

Basic C++ Project Template

github.com/ssciwr/cpp-project-template

Basic Python Project Template

github.com/ssciwr/python-project-template

Advanced C++ Project Template

github.com/ssciwr/cookiecutter-cpp-project

https://github.com/ssciwr/cpp-project-template
https://github.com/ssciwr/python-project-template
https://github.com/ssciwr/cookiecutter-cpp-project

