Strong Dynamics on the Lattice

Liam Keegan

December 2009

Edinburgh University

[0910.4535] - Francis Bursa, Luigi Del Debbio, Claudio Pica, Thomas Pickup

The Standard Model Technicolor Extended Technicolor Walking Technicolor Minimal Walking Technicolo

The Standard Model

- Standard Model is well verified experimentally
- Electroweak Symmetry breaking included (i.e. mass of Z/W bosons)
- But EWSB mechanism remains a mystery

- 4 🗗 ▶

The Standard Model Technicolor Extended Technicolor Walking Technicolor Minimal Walking Technicolo

The Higgs Mechanism

- Higgs mechanism will be tested at the LHC, but
 - Ad hoc: all fermion masses and mixings arbitrary parameters
 - Trivial: without new physics, higgs decouples
 - Unnatural: quadratically sensitive to Planck scale, so requires fine tuning

< ロト < 同ト < 三ト <

• So thought to be an effective description of a more fundamental theory, e.g. SUSY, Technicolor, ...

The Standard Model Technicolor Extended Technicolor Walking Technicolor Minimal Walking Technicolo

- SM without Higgs already has some EW symmetry breaking.
- Quark condensate gives M_W of the order of the pion decay constant:

$$\langle \overline{u}_L u_R + \overline{d}_L d_R \rangle \neq 0 \rightarrow M_W = \frac{gF_{\pi}}{2} \sim 30 MeV$$

• So why not have some more "techni-quarks" that form a condensate at a higher scale $(F_{\pi}^{TC} \sim 250 GeV \sim \Lambda_{TC})$

(日)

The Standard Model Technicolor Extended Technicolor Walking Technicolor Minimal Walking Technicolor

Extended Technicolor

- But naively scaling up QCD leads to a problem:
- Need large Λ_{ETC} to suppress Flavour Changing Neutral Currents
- Need small Λ_{ETC} to get physical quark masses

< ロ > < 同 > < 三 > < 三 > 、

The Standard Model Technicolor Extended Technicolor Walking Technicolor Minimal Walking Technicolor

Walking Technicolor

• If dynamics are not like QCD, $\langle \overline{\Psi}\Psi \rangle_{ETC}$ can be large:

$$\langle \overline{\Psi}\Psi
angle_{ETC} = \langle \overline{\Psi}\Psi
angle_{TC} exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} \gamma(\mu) d\ln\mu\right)$$

If γ(μ) is large (~ 1) and approximately constant, i.e. walking coupling, then get large power enhancement

•
$$\langle \overline{\Psi}\Psi \rangle_{ETC} = \langle \overline{\Psi}\Psi \rangle_{TC} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{2}$$

< ロト < 同ト < 三ト <

The Standard Model Technicolor Extended Technicolor Walking Technicolor Minimal Walking Technicolor

Walking Technicolor

< ロ > < 同 > < 回 > < 回 >

The Standard Model Technicolor Extended Technicolor Walking Technicolor Minimal Walking Technicolor

Minimal Walking Technicolor

- Simplest interesting model: MWT
- 2 dirac fermions transforming under the adjoint representation of SU(2)

Image: A image: A

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Schrodinger Functional

- Finite size renormalisation scheme
- Can be defined in continuum and on lattice

▲□ ► < □ ► </p>

• Scale $\mu \sim 1/L$

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Step Scaling

• Step scaling - only need L, 2L

•
$$\overline{g}^2(\beta, L) = u$$

•
$$u' = \overline{g}^2(\beta, 2L)$$

• Now tune bare parameters until $\overline{g}^2(\beta',L) = u'$

イロト イポト イヨト イヨト

3

Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Step Scaling

- Step scaling only need L, 2L
- $\overline{g}^2(\beta, L) = u$ • $u' = \overline{g}^2(\beta, 2L)$
- Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

イロト イポト イヨト イヨト

-

• Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Step Scaling

• Step scaling - only need L, 2L

•
$$\overline{g}^2(\beta, L) = u$$

•
$$u' = \overline{g}^2(\beta, 2L)$$

• Now tune bare parameters until $\overline{g}^2(\beta',L) = u'$

イロト イポト イヨト イヨト

-

Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Step Scaling

• Step scaling - only need L, 2L

•
$$\overline{g}^2(\beta, L) = u$$

•
$$u' = \overline{g}^2(\beta, 2L)$$

• Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

イロト イポト イヨト イヨト

-

• Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Step Scaling

• Step scaling - only need L, 2L

•
$$\overline{g}^2(\beta, L) = u$$

•
$$u' = \overline{g}^2(\beta, 2L)$$

• Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

イロト イポト イヨト イヨト

-

Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

- Step scaling only need a violin and a cello
- Put finger somehwere on violin, play it.
- Put finger in the same place on cello, play it.

< ロ > < 同 > < 回 > < 回 > < 国 > < 国

 Now move finger on violin until it makes the same sound as the cello.

Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

- Step scaling only need a violin and a cello
- Put finger somehwere on violin, play it.
- Put finger in the same place on cello, play it.

< ロ > < 同 > < 三 >

• Now move finger on violin until it makes the same sound as the cello.

• Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

- Step scaling only need a violin and a cello
- Put finger somehwere on violin, play it.
- Put finger in the same place on cello, play it.

- ∢ 🗇 ▶

• Now move finger on violin until it makes the same sound as the cello.

Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

- Step scaling only need a violin and a cello
- Put finger somehwere on violin, play it.
- Put finger in the same place on cello, play it.
- Now move finger on violin until it makes the same sound as the cello.
- Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

- Step scaling only need a violin and a cello
- Put finger somehwere on violin, play it.
- Put finger in the same place on cello, play it.
- Now move finger on violin until it makes the same sound as the cello.
- Repeat

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

• But, we only have a poor approximation to a violin

• So need to repeat on a series of "guitars" with different fret spacings, and take the limit

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

• But, we only have a poor approximation to a violin

• So need to repeat on a series of "guitars" with different fret spacings, and take the limit

イロト イポト イヨト イヨト

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Musical Analogy

• But, we only have a poor approximation to a violin

• So need to repeat on a series of "guitars" with different fret spacings, and take the limit

< □ > < 同 > < 回 > <

Schrodinger Functional Step Scaling Musical Analogy Continuum Extrapolation

Continuum Exptrapolation

- Need to do this for various lattice spacings *a*
- Then extrapolate to

a = 0

Running Coupling Mass Anomalous Dimension Pros and Cons

Running Coupling

- Coupling runs very slowly
- Looks like there may be a fixed point at u ~ 3
- But once we include systematic errors the signal is swamped

P

Running Coupling Mass Anomalous Dimension Pros and Cons

Running Coupling

- Coupling runs very slowly
- Looks like there may be a fixed point at u ~ 3
- But once we include systematic errors the signal is swamped

Running Coupling Mass Anomalous Dimension Pros and Cons

Mass Anomalous Dimension

- Anomalous dimension is better determined
- Consistent with one-loop prediction
- Smaller than desired for phenomenology
- But is sensitive to the location of the fixed point

Running Coupling Mass Anomalous Dimension Pros and Cons

Pros and Cons

• Pros:

- Measured running of coupling and mass
- Full control of systematic errors
- Cons:
 - Systematic errors swamp our signal!
- How can we do better?
 - Work harder: More computer time
 - Work smarter: Improved technique

< 口 > < 同 >

- ₹ 🖹 🕨

Running Coupling Mass Anomalous Dimension Pros and Cons

Pros and Cons

• Pros:

- Measured running of coupling and mass
- Full control of systematic errors
- Cons:
 - Systematic errors swamp our signal!
- How can we do better?
 - Work harder: More computer time
 - Work smarter: Improved technique

< 口 > < 同 >

< ∃ >

Running Coupling Mass Anomalous Dimension Pros and Cons

Pros and Cons

• Pros:

- Measured running of coupling and mass
- Full control of systematic errors
- Cons:
 - Systematic errors swamp our signal!
- How can we do better?
 - Work harder: More computer time
 - Work smarter: Improved technique

Musical Diversion Lattice Analogy Conclusion

Bowing

Liam Keegan Strong Dynamics on the Lattice

*ロト *部ト *注ト *注ト

Musical Diversion Lattice Analogy Conclusion

Bowing

Liam Keegan Strong Dynamics on the Lattice

*ロト *個ト *注ト *注ト

Musical Diversion Lattice Analogy Conclusion

Bowing

イロン イロン イヨン イヨン

Musical Diversion Lattice Analogy Conclusion

Bowing

Liam Keegan Strong Dynamics on the Lattice

イロン イロン イヨン イヨン

Musical Diversion Lattice Analogy Conclusion

Bowing

イロン イロン イヨン イヨン

Musical Diversion Lattice Analogy Conclusion

Bowing

Liam Keegan Strong Dynamics on the Lattice

・ロト ・四ト ・ヨト ・ヨト

Musical Diversion Lattice Analogy Conclusion

Bowing

・ロト ・四ト ・ヨト ・ヨト

Musical Diversion Lattice Analogy Conclusion

Bowing

イロン イロン イヨン イヨン

Musical Diversion Lattice Analogy Conclusion

Bowing

Liam Keegan Strong Dynamics on the Lattice

イロン イロン イヨン イヨン

Musical Diversion Lattice Analogy Conclusion

Bowing

イロン イロン イヨン イヨン

Musical Diversion Lattice Analogy Conclusion

Bowing

з

Musical Diversion Lattice Analogy Conclusion

Improvement

- Many ways to discretise the action
- We used the simplest, with scaling errors O(a)
- Could use an improved action, with scaling errors $O(a^2)$
- This would significantly reduce the systematic error in the continuum extrapolation our main source of errors.

< ロト < 同ト < 三ト <

Musical Diversion Lattice Analogy Conclusion

Improvement

- Many ways to discretise the action
- We used the simplest, with scaling errors O(a)
- Could use an improved action, with scaling errors $O(a^2)$
- This would significantly reduce the systematic error in the continuum extrapolation our main source of errors.

• □ > • □ > • □ > • □ > •

Musical Diversion Lattice Analogy Conclusion

Improvement

- Many ways to discretise the action
- We used the simplest, with scaling errors O(a)
- Could use an improved action, with scaling errors $O(a^2)$
- This would significantly reduce the systematic error in the continuum extrapolation our main source of errors.

• □ ▶ • □ ▶ • □ ▶ •

Musical Diversion Lattice Analogy Conclusion

Conclusion

- We present the first measurement of the mass anomalous dimension in MWT.
- This is a phenomenologically important quantity, but is sensitive to the location of a fixed point, which we need better statistics and/or techniques to determine well.
- Many complementary approaches are required to study these theories:
- Scaling studies: Schrodinger Functional scaling studies, Monte Carlo Renormalisation Group methods, Spectral studies, ...

• □ > • □ > • □ > • □ > •

Musical Diversion Lattice Analogy Conclusion

Conclusion

- We present the first measurement of the mass anomalous dimension in MWT.
- This is a phenomenologically important quantity, but is sensitive to the location of a fixed point, which we need better statistics and/or techniques to determine well.
- Many complementary approaches are required to study these theories:
- Scaling studies: Schrodinger Functional scaling studies, Monte Carlo Renormalisation Group methods, Spectral studies, ...

• □ > • □ > • □ > • □ > •

Musical Diversion Lattice Analogy Conclusion

Conclusion

- We present the first measurement of the mass anomalous dimension in MWT.
- This is a phenomenologically important quantity, but is sensitive to the location of a fixed point, which we need better statistics and/or techniques to determine well.
- Many complementary approaches are required to study these theories:
- Scaling studies: Schrodinger Functional scaling studies, Monte Carlo Renormalisation Group methods, Spectral studies, ...

< 口 > < 同 > < 三 > < 三

Musical Diversion Lattice Analogy Conclusion

(Final) Musical Analogy

<ロ> <同> <同> < 回> < 回>