Mass Anomalous Dimension at Large N

Liam Keegan

June 2012

IFT UAM/CSIC, Universidad Autónoma de Madrid, Spain.

Lattice 2012. Cairns, Australia.

・ 一 ・ ・ ・ ・ ・ ・

Motivation Method Large N

Dynamical Electroweak Symmetry Breaking

- Dynamical EWSB or Technicolor Models
- In particular MWT: 2 dirac fermions transforming under the adjoint representation of SU(2)

Saninno, Tuominen [arXiv:hep-ph/0405209]

< 🗇 > < 🖃 >

Motivation Method Large N

Mass Anomalous Dimension

Size of quark mass terms in the effective action depend on the value of the anomalous mass dimension γ .

- Need $\gamma \simeq 1$ to generate large enough quark masses.
- Important quantity to measure in TC models.

・ 同 ト ・ ヨ ト ・ ヨ ト

Method

Motivation **Method** Large N

At small eigenvalues, at leading order,

- Integral of this is the mode number, which is just counting the number of eigenvalues of the Dirac Operator on the lattice.
- Fitting this to the above form can give a precise value for $\gamma,$ as done recently for MWT by Agostino Patella.

Motivatio Method Large N

Why Large N?

- In perturbation theory, γ_* is independent of N, so we expect the large N value to be close to the N = 2 value.
- At large N the theory is (under certain conditions) volume independent, so the calculation can be done on a small lattice or even a single site.
- Interesting cross check of method, perturbation theory and large N volume independence.

・ 同・ ・ ヨ・

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj QCDadj+Twist

Large–N Volume Independence

Eguchi-Kawai '82

In the limit $N_c \rightarrow \infty$, the properties of U(N_c) Yang–Mills theory on a periodic lattice are independent of the lattice size.

$$S_{YM} = S_{EK} \equiv \frac{N_c}{\lambda} \sum_{\mu < \nu} Tr \left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} + h.c. \right)$$

where $\lambda \equiv g^2 N_c$ is the bare 't Hooft coupling, held fixed as $N_c \to \infty$.

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj QCDadj+Twist

Conditions

...but it turns out only

- for single-trace observables defined on the original lattice of side L, that are invariant under translations through multiples of the reduced lattice size L'
- and if the U(1)^d center symmetry is not spontaneously broken,
 i.e. on the lattice the trace of the Polyakov loop vanishes.

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj QCDadj+Twist

Pure Gauge Phase Diagram

Pure Gauge: Plaquette and Polyakov loop vs λ .

Eguchi-Kawai **Twisted Eguchi-Kawai** QCDadj QCDadj+Twist

Twisted Eguchi–Kawai

Gonzalez-Arroyo Okawa '83

Impose twisted boundary conditions, such that the classical minimum of the action preserves a Z_N^2 subgroup of the center symmetry.

$$S_{TEK} = \frac{N_c}{\lambda} \sum_{\mu < \nu} Tr\left(z_{\mu\nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} + h.c.\right)$$

where
$$z_{\mu\nu} = exp\{2\pi ik/\sqrt{N}\}$$

• Original choice is k = 1

▲ 同 ▶ → 三 ▶

Twisted Eguchi-Kawai

Twisted Pure Gauge Phase Diagram

k = 1 Twisted Pure Gauge: Plaquette and Polyakov loop vs λ .

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj QCDadj+Twist

Twisted Eguchi–Kawai

- Original choice k = 1 seen to break center-symmetry at intermediate couplings for $NL^2 \gtrsim 100$
- But symmetry can be restored by scaling the twist k with N

Gonzalez–Arroyo Okawa [arXiv:1005.1981]

• See the talks by Antonio Gonzalez-Arroyo and Masanori Okawa.

▲□ ► < □ ► </p>

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj QCDadj+Twist

QCDadj

Kotvul Unsal Yaffe '07

Add (massless or light) adjoint fermions with periodic boundary conditions

- Preserves center symmetry down to a single site
- and for a range of light adjoint fermion masses.
- Works in perturbation theory (for $am \lesssim \frac{1}{N}$)
- ullet And in lattice simulations (possibly even for am $\lesssim 1)$

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj QCDadj+Twist

QCDadj Phase Diagram

QCDadj ($am_0 = 0$): Plaquette and Polyakov loop vs λ .

Introduction Eguchi-Large N Volume Indepence Twisted Results QCDad Conclusion QCDad

Eguchi-Kawai Twisted Eguchi-Kawa QCDadj QCDadj+Twist

QCDadj+Twist Phase Diagram

QCDadj+Twist ($am_0 = 0$): Plaquette and Polyakov loop vs λ .

Simulation Details QCDadj QCDadj+Twist Anomalous Mass Dimension

Simulation Details

- Simulate QCDadj.
 - SU(N) gauge theory with 2 adjoint Dirac fermions with periodic boundary conditions.
- Use 2^4 lattices with N up to 20.
 - $V_{eff} \sim L^4 N^2$, so equivalent to $N \sim 80$ on a single site.
- Measure lowest 5% of eigenvalues of the Dirac operator Q^2 .
 - Scales with N^2 , ~ 400 eigenvalues for N = 16.
- Choose initial bare coupling $\lambda = 2.80$.
 - Need to stay in weak coupling phase.
 - But want fairly strong coupling to minimise 1/N effects.
- Simulate with and without the minimal symmetric twist.

伺 ト く ヨ ト く ヨ ト

Introduction Simulation Details Large N Volume Indepence QCDadj Results QCDadj+Twist Conclusion Anomalous Mass Dimension

QCDadj: Bare Coupling and Critical Bare Mass

QCDadj at $\lambda = 2.80$: Scan of the plaquette and lowest Dirac operator eigenvalue as a function of the bare mass.

Want as light a mass as possible, while avoiding the Aoki phase.

Introduction Simulation Details Large N Volume Indepence QCDadj Results QCDadj+Twist Conclusion Anomalous Mass Dime

QCDadj Mode Number - Zero modes

Finite volume effect: 4(N - 1) would-be zero modes. These are suppressed by the volume $(1/N^2)$ in the large-N limit.

Introduction Simulation Details Large N Volume Indepence QCDadj Results Conclusion Anomalous Mass Dimensio

QCDadj Mode Number - N dependence

Mass $am_0 = -1.05$, Dirac mode number for various *N* (zero modes subtracted).

Introduction Simulation Details Large N Volume Indepence QCDadj Results QCDadj+Twist Conclusion Anomalous Mass Dimer

QCDadj Mode Number - Mass dependence

N=16, Dirac mode number for various masses am_0 (zero-modes subtracted).

Introduction Simulation Details Large N Volume Indepence QCDadj Results QCDadj+Twist Conclusion Anomalous Mass Dimensioi

QCDadj+Twist: Bare Coupling and Critical Bare Mass

QCDadj+Twist at $\lambda = 2.80$; the lowest eigenvalue of the Dirac operator gives a similar critical bare mass, but do not see a discontinuity in the plaquette.

Introduction Simulation Details Large N Volume Indepence QCDadj Results QCDadj+Twist Conclusion Anomalous Mass Dimensio

QCDadj+Twist Mode Number - *N* dependence

At $am_0 = -1.05$, do not see the would-be zero modes, they are suppressed by the twist. Otherwise similar to the untwisted case.

Large N Volume Indepence Results QCDadj+Twist Conclusion

QCDadj+Twist Mode Number - Mass dependence

N=16 mass-dependence.

Mode number for N=16, various amo

▲ 同 ▶ → 三 ▶

э

Introduction Simulation Details Large N Volume Indepence QCDadj Results QCDadj+Twist Conclusion Anomalous Mass Dimension

Method

Fit data to the function

$$a^{-4}\overline{
u}(\Omega)\simeq a^{-4}\overline{
u}_0+A\left[(a\Omega)^2-(am)^2
ight]^{rac{2}{1+\gamma_*}}$$

in some intermediate range $a\Omega_L < a\Omega < a\Omega_H$ where

- a⁻⁴ν(Ω) is the number of eigenvalues of Q² below Ω² divided by the volume
- $a^{-4}\overline{\nu}_0$ is a fitted parameter (contribution of small excluded eigenvalues, $\propto M_{PS}^4$)
- am is a fitted parameter (physical mass)
- A is a fitted parameter

Patella [arXiv:1204.4432]

< ロ > < 同 > < 回 > < 回 >

Anomalous Mass Dimension Fit

Example fit to $A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$ for $0.2 < (a\Omega)^2 < 0.8$ (Only illustrative: many free parameters, and unknown systematics from finite mass and volume effects at this stage)

Anomalous Mass Dimension Fit

Example fit to $A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$ for $0.2 < (a\Omega)^2 < 0.8$ (Only illustrative: many free parameters, and unknown systematics from finite mass and volume effects at this stage)

Conclusion and Further Work

Conclusion

- Promising initial results.
 - Volume reduction seems to work.
 - Eigenvalue spectrum looks sensible.
- Now need to go to larger N and lighter masses.
- Also need to investigate the systematics of the fitting procedure.
- And want to try different twist and couplings.

Correct Phase

The value of the plaquette for $\lambda = 2.80$ at $am_0 = -1.05$ is consistent with being in the weak coupling phase.

◆ 同 ▶ ◆ 目

Strong Coupling Phase

In the (unphysical) strong coupling phase, no zero modes, 1/N corrections are tiny, and quenched configurations, with or without twist, give the same Dirac operator spectrum as dynamical ones.

