Walking Technicolor on the Lattice

Liam Keegan

Nov 2010

Edinburgh University

SF: Francis Bursa, Luigi Del Debbio, Claudio Pica, Thomas Pickup MCRG: Simon Catterall, Luigi Del Debbio, Joel Geidt

< 🗇 🕨

Physics

Schrodinger Functional Monte Carlo Renormalisation Group //////// The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

The Standard Model

 Standard Model is well verified experimentally

- Electroweak Symmetry breaking included (i.e. mass of W/Z bosons)
- But EWSB mechanism remains a mystery

< □ > < 同 > < 三 >

Fermilab

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

The Higgs Mechanism

- Higgs mechanism will be tested at the LHC, but
 - Ad hoc: all fermion masses and mixings arbitrary parameters
 - Trivial: without new physics, Higgs decouples
 - Unnatural: quadratically sensitive to Planck scale, so requires fine tuning

• So thought to be an effective description of a more fundamental theory, e.g. SUSY, Technicolor, ...

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Technicolor

- SM without Higgs already has some EW symmetry breaking.
- Quark condensate gives M_W of the order of the pion decay constant:

$$\langle \overline{u}_L u_R + \overline{d}_L d_R \rangle \neq 0 \rightarrow M_W = \frac{gF_{\pi}}{2} \sim 30 MeV$$

• So why not have some more 'techni-quarks' that form a condensate at a higher scale $(F_{\pi}^{TC} \sim 250 GeV \sim \Lambda_{TC})$

Weinberg 78, Susskind 78

< D > < A > < B >

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Extended Technicolor

- Add interactions between SM quarks and techni-quarks at some high scale Λ_{ETC}
- Get SM quark mass terms in effective low energy lagrangian:

Dimopoulos, Susskind 79 - Eichten, Lane 80

• □ > • □ > • □ > • □ > •

The Standard Model Technicolor **Technicolor Problems** Walking Technicolor Phase Diagram

Flavour Changing Neutral Currents

• But also get FCNC term:

- Naively scaling up QCD leads to a problem:
- Need large $\Lambda_{ETC} \sim 1000 \, TeV$ to suppress Flavour Changing Neutral Currents
- $\bullet\,$ But this gives a strange quark mass that is \sim 50 times too small

The Standard Model Technicolor **Technicolor Problems** Walking Technicolor Phase Diagram

S, T Parameters

- S,T parameters measure deviation from SM caused by new physics
- Naive QCD scaling gives $\sim 2\sigma$ disagreement with experiment
- Perturbative estimate: $S = \frac{1}{6\pi} \frac{N_f}{2} d(R) = 0.16$

Image: A mathematical states and a mathem

Particle Data Group 2008

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Walking Technicolor Cartoon

Liam Keegan Walking Technicolor on the Lattice

< ロ > < 同 > < 回 > < 回 >

з

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Walking Technicolor Quark Masses

$$\langle \overline{\Psi}\Psi \rangle_{ETC} = \langle \overline{\Psi}\Psi \rangle_{TC} exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} \gamma(\mu) d\ln\mu\right)$$

• In QCD this gives logarithmic enhancement:

$$\langle \overline{\Psi}\Psi
angle_{\textit{ETC}} = \log \left(rac{\Lambda_{\textit{ETC}}}{\Lambda_{\textit{TC}}}
ight)^{\gamma} \langle \overline{\Psi}\Psi
angle_{\textit{TC}}$$

• But a walking coupling gives power enhancement:

$$\langle \overline{\Psi}\Psi \rangle_{ETC} = \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma} \langle \overline{\Psi}\Psi \rangle_{TC}$$

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Walking Technicolor S Parameter

- Walking seems to reduce S parameter compared to running case.
- And other sectors of the theory, such as new leptons, are expected to contribute negatively

Dietrich, Sannino, Tuominen [arXiv:hep-ph/0505059]

• But ideally this also needs to be studied non-perturbatively

< D > < P > < P > < P >

The Standard Model Technicolor Technicolor Problems Walking Technicolor **Phase Diagram**

Phase Diagram

 MWTC: 2 dirac fermions transforming under the adjoint representation of SU(2)

Saninno, Tuominen [arXiv:hep-ph/0405209]

< □ > < 同 > < 三 >

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Scheme dependence

- Walking/Running of coupling is scheme dependent
- Want to measure physical, scheme independent quantities:
 - Existence of fixed point
 - Anomalous mass dimension at the fixed point

Schrodinger Functional

Schrodinger Functional

- Finite size renormalisation scheme
- Can be defined in continuum and on lattice
- Scale $\mu \sim 1/L$
- Dirichelet timelike bcs
- Constant gauge fields C, C'

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Coupling

Boundary gauge fields induce a background chromoelectric field in the bulk with strength parametrised by $\eta.~(\eta=\pi/4)$

Define a coupling as the response of the system to perturbations of the background gauge field configuration.

SF Coupling

$$\overline{g}^{2}(L) = k \left\langle \frac{\partial S}{\partial \eta} \right\rangle^{-1}$$
Liam Keegan
Walking Technicolor on the Lattice

Anomalous Dimension

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

The renormalised mass is given by

Renormalised Mass

$$m = \frac{Z_A}{Z_P(L)} m_{PCAC}$$

We work at zero mass, and Z_A does not depend on L, so the running of the mass depends only on Z_P :

Pseudoscalar density renormalisation constant

$$Z_P(L) = \frac{\sqrt{3f_1}}{f_P(L/2)}$$

< 4 ₽ > < 3

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Naive Scaling

- Naive scaling: measure on L, 2, 4L, ..., 2ⁿL
- Corresponds to scales $\mu, \frac{1}{2}\mu, \frac{1}{4}\mu, \dots, 2^{-n}\mu$
- But cpu time scales as $\sim N^5$, and we want to simulate over a large range ($\sim 10^3$) of scales
- So naive scaling method no good

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Naive Scaling

- Naive scaling: measure on L, 2, 4L, ..., 2ⁿL
- Corresponds to scales $\mu, \frac{1}{2}\mu, \frac{1}{4}\mu, \dots, 2^{-n}\mu$
- But cpu time scales as $\sim N^5$, and we want to simulate over a large range ($\sim 10^3$) of scales
- So naive scaling method no good

(日)

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Naive Scaling

- Naive scaling: measure on L, 2, 4L, ..., 2ⁿL
- Corresponds to scales $\mu, \frac{1}{2}\mu, \frac{1}{4}\mu, \dots, 2^{-n}\mu$
- But cpu time scales as $\sim N^5$, and we want to simulate over a large range ($\sim 10^3$) of scales
- So naive scaling method no good

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Step Scaling

- Step scaling only need $N^4, (2N)^4$
- $\overline{g}^2(\beta, L) = u$
- $u' = \overline{g}^2(\beta, 2L)$
- Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

イロト イポト イヨト イヨト

3

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Step Scaling

- Step scaling only need $N^4, (2N)^4$
- $\overline{g}^2(\beta, L) = u$
- $u' = \overline{g}^2(\beta, 2L)$
- Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

イロト イポト イヨト イヨト

-

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Step Scaling

• Step scaling - only need $N^4, (2N)^4$

•
$$\overline{g}^2(\beta, L) = u$$

•
$$u' = \overline{g}^2(\beta, 2L)$$

• Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

イロト イポト イヨト イヨト

-

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Step Scaling

• Step scaling - only need $N^4, (2N)^4$

•
$$\overline{g}^2(\beta, L) = u$$

•
$$u' = \overline{g}^2(\beta, 2L)$$

• Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

イロト イポト イヨト イヨト

-

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Step Scaling

• Step scaling - only need N^4 , $(2N)^4$

•
$$\overline{g}^2(\beta, L) = u$$

•
$$u' = \overline{g}^2(\beta, 2L)$$

• Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Step Scaling

- This method was used by the ALPHA collaboration
- Can cover an arbitrary range of scales
- But each step requires retuning β, κ , which is time consuming
- And each step must be done sequentially, can't parallelise the runs

Bode et. al. [arXiv:hep-lat/0105003]

(日)

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Interpolation Method

• Interpolation function method - just measure \overline{g}^2 at a range of β for each L and interpolate:

Coupling interpolation function

$$\frac{1}{\overline{g}^2(\beta, L/a)} = \frac{\beta}{2N} \sum_{i=0}^n c_i \left(\frac{2N}{\beta}\right)^i$$

- All simulations can be done in parallel, and no need for constant retuning
- However the choice of interpolation function introduces a new source of systematic error

method first used by Appelquist et. al. [arXiv:0901.3766]

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Interpolation Method

Liam Keegan Walking Technicolor on the Lattice

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Coupling Step Scaling Function

Lattice step scaling function

$$\Sigma(u, s, a/L) = \overline{g}^2(g_0, sL/a) \big|_{\overline{g}^2(g_0, L/a) = u}$$

- Start on L^4 lattice where $\overline{g}^2 = u$
- Go to $(sL)^4$ lattice and measure $\overline{g}^2 = \Sigma$

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Coupling Step Scaling Function

Continuum step scaling function

$$\sigma(u,s) = \lim_{a/L \to 0} \Sigma(u,s,a/L)$$

- Repeat for different lattice spacings a/L
- Extrapolate to the continuum $a/L \rightarrow 0$

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Coupling Step Scaling Function

Relation to continuum beta-function

$$-2\log s = \int_{u}^{\sigma(u,s)} \frac{dx}{\sqrt{x}\beta(\sqrt{x})}$$

• Integrated β -function

•
$$\sigma(u,s) = u$$
 corresponds to a fixed point ($\beta = 0$)

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Mass Step Scaling Function

Lattice step scaling function

$$\Sigma_P(u,s,a/L) = \left. \frac{Z_P(g_0,sL/a)}{Z_P(g_0,L/a)} \right|_{\overline{g}^2(L)=u}$$

- Start on L^4 lattice where $\overline{g}^2 = u$, measure Z_P
- Go to $(sL)^4$ lattice and measure new Z_P then take ratio

< ロ > < 同 > < 回 > < 回 >

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Mass Step Scaling Function

Continuum step scaling function

$$\sigma_P(u,s) = \lim_{a/L \to 0} \Sigma_P(u,s,a/L)$$

- Repeat for different lattice spacings a/L
- Extrapolate to the continuum $a/L \rightarrow 0$

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Anomalous Dimension

Estimator for γ $\hat{\gamma}(u) = -rac{\log |\sigma_P(u,s)|}{\log |s|}$

- At a fixed point this gives the anomalous dimension
- Away from a fixed point $\hat{\gamma}$ will deviate from γ

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

SF Simulation details

- Simulated on N^4 lattices where N = 6, 8, 12, 16
- β in range 2.0 16.0
- Limited by bulk phase transition at $\beta\sim 2.0$
- Unimproved Wilson fermions
- Step size s = 4/3
- ullet ~ 1000 configurations on the largest lattices

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Z_P Data & Continuum Extrapolation

< 17 >

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

• Consistent with one-loop perturbative prediction

Image: Image:

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

Mass Anomalous Dimension

- $\hat{\gamma}$ is well determined
- Consistent with one-loop prediction
- Smaller than desired for phenomenology
- But is sensitive to the location of the fixed point

< 17 ▶
Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results **Running Coupling Results** SF Conclusion

Coupling Data

Image: A mathematical states and a mathem

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results **Running Coupling Results** SF Conclusion

Coupling Data

- Not much variation with L
- Very good agreement with independent results

Hietanen, Rummukainen, Tuominen [arXiv:0904.0864]

< 一型

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results **Running Coupling Results** SF Conclusion

Continuum Extrapolation

- No clear *a*/*L* dependence
- This is our largest source of error
- Continuum values consistent with no running within errors

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results **Running Coupling Results** SF Conclusion

Running Coupling

- Coupling runs very slowly
- Looks like there may be a fixed point at u ~ 3
- But once we include systematic errors the signal is swamped

< 4 ₽ > < E

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results **Running Coupling Results** SF Conclusion

Running Coupling

- Coupling runs very slowly
- Looks like there may be a fixed point at u ~ 3
- But once we include systematic errors the signal is swamped

< 1 →

Schrodinger Functional Scales on the lattice Mass Anomalous Dimension Results Running Coupling Results SF Conclusion

- Have full control over statistical and systematic errors
- Can determine mass anomalous dimension well as a function of coupling
- But only scheme-independent at a fixed point
- In the region 2.0 $<\overline{g}^2<$ 3.2 where there may be a fixed point we find 0.05 $<\gamma<$ 0.56

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(0)}$$
 , $\{g_i^{(0)}\}$

- - ◆ 同 ▶ - ◆ 目 ▶

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(1)} = \hat{\xi}^{(0)}/2$$
 , $\{g_i^{(1)}\}$

- - ◆ 同 ▶ - ◆ 目 ▶

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(2)} = \hat{\xi}^{(0)}/2^2$$
 , $\{g_i^{(2)}\}$

< 17 ▶

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(3)} = \hat{\xi}^{(0)}/2^3$$
 , $\{g_i^{(3)}\}$

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Monte Carlo Renormalisation Group

< 17 ▶

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Lattice Blocking Transform

• Free parameter α adjusts RG blocking transform

 Optimise α to approach RT quickly such that subsequent steps give the same matching

$$V_{n,\mu} = \operatorname{Proj}\left[(1-\alpha)U_{n,\mu}U_{n+\mu,\mu} + \frac{\alpha}{6}\sum_{\nu\neq\mu}U_{n,\nu}U_{n+\nu,\mu}U_{n+\mu+\nu,\mu}U_{n+2\mu,\nu}^{\dagger}\right]$$

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

MCRG Key Points

- Find pairs of couplings with identical blocked actions, whose correlation lengths differ by a factor 2
- Identify matching actions by comparing observables on blocked lattices (plaquette, 6-link and 8-link loops)
- Always match between lattices with the same number of points to minimise finite size errors
- Optimise α to approach the RT quickly so that subsequent steps give the same matching

Hasenfratz [arXiv:hep-lat/0907.0919]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MCRG **Pure Gauge** Mass Anomalous Dimension Results MCRG Conclusion

Pure Gauge Simulation

- Simulated on lattices of size L=32,16
- Allows for 3 matchings; 2(1), 3(2), 4(3) steps on the 32⁴(16⁴) lattices
- Optimise α such that these steps predict the same matching coupling
- Repeated this for three different blocking transforms, and on 16(8) lattices

MCRG **Pure Gauge** Mass Anomalous Dimension Results MCRG Conclusion

Plaquette Matching

Image: A math a math

3

-

MCRG **Pure Gauge** Mass Anomalous Dimension Results MCRG Conclusion

Alpha Optimisation

◆ 同 ▶ ◆ 目

э

MCRG **Pure Gauge** Mass Anomalous Dimension Results MCRG Conclusion

Pure Gauge Bare Step Scaling

Liam Keegan Walking Technicolor on the Lattice

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Phase diagram

Liam Keegan Walking Technicolor on the Lattice

< 同 ▶

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Phase diagram

Image: A mathematical states and a mathem

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Simulation details

- Simulated on lattices of size L=16,8
- Allows for 2 matchings; 2(1), 3(2) steps on the 16⁴(8⁴) lattices
- Keep β constant, match in bare mass
- $\bullet\,$ Optimise α such that these all agree to find continuum physics

< ロ > < 同 > < 回 > < 回 > < 国 > < 国

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Plaquette Matching

- 16⁴ blocked two/three times
- Single mass m = -1.05

< 17 ▶

- 8⁴ blocked one/two times
- Many masses -1.15 < m' < -0.90

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Alpha Optimisation

з

イロト イポト イヨト イヨト

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

PCAC Masses

- Have matching bare masses, but additively renormalised quantities
- So need to convert to PCAC masses to be able to extract anomalous dimension

Image: A math a math

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Anomalous Dimension

 Extract γ from ratio of masses:

•
$$m' = 2^{\gamma + 1}m$$

- To verify that beta is irrelevant, repeat at different beta...
- Linear fit gives $\gamma = 0.49(13)$

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

Anomalous Dimension

 Extract γ from ratio of masses:

•
$$m' = 2^{\gamma+1}m$$

- To verify that beta is irrelevant, repeat at different beta...
- Linear fit gives $\gamma = 0.49(13)$

< 17 ▶

MCRG Pure Gauge Mass Anomalous Dimension Results MCRG Conclusion

MCRG Conclusion

- Can determine mass anomalous dimension without having to measure the running of the coupling
- $\bullet\,$ Independence of β strongly suggests we are at an IRFP
- We find $\gamma = 0.49(13)$

イロト イポト イヨト イヨト

Summary

- Minimal Walking Technicolor requires a large $\gamma \sim 1$ anomalous dimension.
- We measure this quantity using two independent lattice techniques, and find consistent values:

• This is significantly smaller than desired for phenomenology.

< ロ > < 同 > < 回 > < 回 >

All-order prediction SF Definitions MWT Pheno

Prediction for anomalous dimension

Conjectured all orders beta function

$$\beta(g) = \frac{g^3}{(4\pi)^2} \frac{\beta_0 - \frac{2}{3}T(r)N_f\gamma(g^2)}{1 - \frac{g^2}{8\pi^2}C_2(G)\left(1 + \frac{2\beta'_0}{\beta_0}\right)}$$

$$\beta_0 = \frac{11}{3}C_2(G) - \frac{4}{3}T(r)N_f, \quad \beta'_0 = C_2(G) - T(r)N_f$$

- $\bullet\,$ For MWT this predicts anomalous dimension $\gamma=3/4$ at fixed point, for CTC $\gamma=5/3$
- This is a scheme-independent quantity at a fixed point

Ryttov, Sannino [arXiv:0711.3745]

All-order prediction SF Definitions MWT Pheno

Boundary Conditions

Bc

undary gauge fields		
$U(x, k) _{t=0}$ $U(x, k) _{t=L}$	=	$\exp\left[\eta au_{3}a/iL ight] \ \exp\left[(\pi-\eta) au_{3}a/iL ight]$

These induce a background chromoelectric field in the bulk with strength parametrised by η , we work at $\eta = \pi/4$.

Fermionic boundary conditions

$$P_+\psi = 0, \ \overline{\psi}P_- = 0 \quad \text{at} \quad t = 0$$
$$P_-\psi = 0, \ \overline{\psi}P_+ = 0 \quad \text{at} \quad t = L$$

These allow simulation directly at zero mass, $P_{\pm} = (1 \pm \gamma_0)/2$.

◆ 同 ▶ ◆ 三

Coupling

Define a coupling as the response of the system to perturbations of the background gauge field configuration.

SF Definitions

MWT Pheno

SF Coupling
$$\overline{g}^{2}(L) = k \left\langle \frac{\partial S}{\partial \eta} \right\rangle^{-1}$$

$$k = -24 \left(rac{L}{a}
ight)^2 \sin\left[\left(rac{a}{L}
ight)^2 (\pi - 2\eta)
ight] \sim -12\pi$$

chosen such that $\overline{g}^2=g_0^2$ to leading order in perturbation theory.

イロト イポト イヨト イヨト

All-order prediction SF Definitions MWT Pheno

SF Coupling

• Choose background field *B* which is classical minimum of system, so fields close to *B* will dominate effective action

$$\Gamma[B] \equiv -\ln \mathcal{Z}[C, C'] = -\ln \left| \int D[\psi] D[\overline{\psi}] D[U] e^{-S} \right|$$

Perturbative expansion

$$\Gamma[B] = \frac{1}{g_0^2} \Gamma_0[B] + \Gamma_1[B] + g_0^2 \Gamma_2[B] + \dots$$

• Choose $\Gamma' \equiv \partial \Gamma / \partial \eta$ as observable, then can define a renormalised coupling as

$$\overline{g}^{2} = \Gamma_{0}^{\prime}/\Gamma^{\prime} = k \left\langle \frac{\partial S}{\partial \eta} \right\rangle^{-1} = g_{0}^{2} + \mathcal{O}(g_{0}^{4})$$

All-order prediction SF Definitions MWT Pheno

PCAC Mass

SF bcs allow simulation directly at zero mass, which we define using the Partially Conserved Axial Current:

PCAC Mass

$$am(x_0) = \frac{\frac{1}{2}(\partial_0 + \partial_0^*)f_A(x_0)}{2f_P(x_0)}$$

< □ > < 同 > < 三 >

ヨート

$$egin{aligned} f_A(x_0) &= -1/12 \int d^3 y \, d^3 z \, \langle \overline{\psi}(x_0) \gamma_0 \gamma_5 au^a \psi(x_0) \overline{\zeta}(y) \gamma_5 au^a \zeta(z)
angle \ f_P(x_0) &= -1/12 \int d^3 y \, d^3 z \, \langle \overline{\psi}(x_0) \gamma_5 au^a \psi(x_0) \overline{\zeta}(y) \gamma_5 au^a \zeta(z)
angle \end{aligned}$$

All-order prediction SF Definitions MWT Pheno

$$f_1 = -1/12L^6 \int d^3 u \, d^3 v \, d^3 y \, d^3 z \, \langle \overline{\zeta}'(u) \gamma_5 \tau^a \zeta'(v) \overline{\zeta}(y) \gamma_5 \tau^a \zeta(z) \rangle$$

• f₁ correlator included to cancel boundary renormalisation factors

3

All-order prediction SF Definitions MWT Pheno

Mass Step Scaling Function

Relation to Beta-function

$$\sigma_P(u) = \left(\frac{u}{\sigma(u)}\right)^{(d_0/(2\beta_0))} \exp\left[\int_{\sqrt{u}}^{\sqrt{\sigma(u)}} dx \left(\frac{\gamma(x)}{\beta(x)} - \frac{d_0}{\beta_0 x}\right)\right]$$

з

イロト イポト イヨト イヨト

All-order prediction SF Definitions MWT Pheno

Particle content of MWT

- Fermionic content:
 - (U,D) techni-quark doublet
 - (N,E) new lepton doublet
 - composite techniquark-technigluon doublet
- Composite Higgs from techni-pion

▲ 同 ▶ → ● 三

All-order prediction SF Definitions MWT Pheno

- details depend on choice of ETC model
- then construct low energy EFT for LHC

Frandsen, Sannino, et. al. [arXiv:0710.4333v1] [arXiv:0809.0793v1]

- 4 同 🕨 - 4 目 🕨 - 4 目
Physics Schrodinger Functional Monte Carlo Renormalisation Group ////////

All-order prediction SF Definitions MWT Pheno

MWT Dark Matter candidate

- lightest technibaryon is a cold dark matter candidate
- TIMP: Technicolour Interacting Massive Particle
- iTIMP: lightest weak isotriplet technibaryon
- Prospects for discovery/exclusion from both dark matter experiments and LHC

Frandsen, Sannino [arXiv:0911.1570]