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Introduction

The main di�culty in lattice simulations
of QCD is calculating the determinant of the
Dirac operator, a very large and badly condi-
tioned matrix.

In the RHMC this is stochastically es-
timated by inverting the matrix acting on
a bosonic �eld of �pseudofermions� using a
Krylov solver.

An old idea to improve this is to use mul-

tiple pseudofermion �elds, which results
in a smaller force term [1], but requires the
inversion of multiple pseudofermion vectors.

Recently there has been renewed inter-
est in another old idea: block Krylov

solvers [2, 3], which invert the same matrix
on multiple vectors simultaneously, and con-
verge with fewer iterations than are required
to solve each vector separately.

Here we combine these two ideas to speed
up the RHMC algorithm.

Multiple Pseudofermions

Starting from the simple observation

detM = [detM1/npf ]npf , (1)

one can construct an RHMC using npf pseud-
ofermions, where for a given gauge �eld the
resulting pseudofermion force term has an ex-
pectation value that is independent of npf ,

F axµ(npf) = Tr

[
M

∂M

∂Ua
xµ

]
≡ Tr[X], (2)

and a variance that is suppressed by npf ,[
F axµ(npf)2

]
−
[
F axµ(npf)

]2
= 2

npf
Tr[X2]. (3)

This variance dominates the rms force � see
Fig.1 � which determines how large the step
size can be in the integrator, so increasing npf

allows a larger step size to be used.

Force Reduction

Increasing npf reduces both the size and
the variance of the pseudofermion force term.
The plot below shows the squared norm of
the pseudofermion and gauge force terms ver-
sus npf , the former decreases by two orders
of magnitude as npf is increased, allowing a
substantial increase in the molecular dynam-
ics step size.

Also shown is a �t to the form predicted
by Eq. (3), which should be valid for large
enough npf , and seems to provide a reasonable
�t to the data for npf & 2.
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Block Work Reduction

The block solver requires fewer iterations
per solution to converge as npf is increased.
The �gure below shows the norm of the er-
ror of the solution versus the number of Dirac
operator calls per righthand side.

In the example below, using a normal CG
solver for npf = 8 would require ∼ 8× more
iterations than npf = 1, while with the block
solver only ∼ 1.5× more iterations are re-
quired.
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Block Speed-up

Applying the Dirac operator to a block
of pseudofermion �elds amortises the cost of
loading the gauge links from memory, and ad-
ditionally provides the bene�t of cache local-
ity for the blocked pseudofermion �elds, re-
sulting in a signi�cant (up to ∼ 5×) speed-up.
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Fig.2 Block Dirac operator speed-up over non-block: 32
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Block Overhead

The multishift block solver promotes all
vector multiply�add operations to matrix
multiply�add operations, leading the compu-
tational cost of these operations to scale with
an additional factor O(npf) compared to the
usual multi�shift CG. However it may be pos-
sible to overlap these operations with other
communications to mitigate their cost.

Another issue is that all vectors need to
be stored simultaneously for the block solver,
which results in an extra factor npf in the
memory required by the algorithm compared
to the usual multi�shift CG.

For su�ciently large npf these costs can
outweigh the gain from both the speed-up of
the block Dirac operator and the reduction in
the required number of Dirac operator calls.

Conclusions

RHMC with multiple pseudofermions and
block solvers has several attractive features:

• More pseudofermions result in a

smaller rms fermion force, allow-

ing a larger integrator step

size to be used.

• Fewer matrix�vector opera-

tions are required to invert the

Dirac operator for each of these

steps.

• The block Dirac operator has a

higher �op rate due to caching

of the gauge links and cache local-

ity of the pseudofermion �elds.

• Possibly faster Monte Carlo

dynamics � under study.
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Block Solvers

A Krylov solver iteratively solves Ax = b
for x given some b. Starting from some ini-
tial residual r, it constructs a solution x(i) af-
ter i iterations from the Krylov basis Ki ={
r,Ar,A2r, . . . , Ai−1r

}
.

If we want to solve for npf vectors bj , we
can form a block matrix B where the j-th col-
umn is bj , and solve AX = B. The solution is
now constructed from the much larger block-
Krylov basis Ki =

{
R,AR,A2R, . . . , Ai−1R

}
,

potentially with signi�cantly fewer itera-

tions � see Fig.3.
One complication is numerical stability, in

particular if the matrix of residuals becomes
badly conditioned the block algorithm can
break down, but this issue was resolved by
adding a QR decomposition of this residual
matrix at each iteration [4]. Here we use a
multi�shift variant of block CG with this
QR decomposition of the residuals matrix [5].


