MCRG Minimal Walking Technicolor

Liam Keegan

March 2011

Edinburgh University

Simon Catterall, Luigi Del Debbio, Joel Geidt

< 同 > < 3

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

The Standard Model

 Standard Model is well verified experimentally

- Electroweak Symmetry breaking included (i.e. mass of W/Z bosons)
- But EWSB mechanism remains a mystery

Image: A = A

Fermilab

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

The Higgs Mechanism

- Higgs mechanism will be tested at the LHC, but
 - Ad hoc: all fermion masses and mixings arbitrary parameters
 - Trivial: without new physics, Higgs decouples
 - Unnatural: quadratically sensitive to Planck scale, so requires fine tuning

• So thought to be an effective description of a more fundamental theory, e.g. SUSY, Technicolor, ...

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Technicolor

- SM without Higgs already has some EW symmetry breaking.
- Quark condensate gives M_W of the order of the pion decay constant:

$$\langle \overline{u}_L u_R + \overline{d}_L d_R \rangle \neq 0 \rightarrow M_W = \frac{gF_{\pi}}{2} \sim 30 MeV$$

• So why not have some more 'techni-quarks' that form a condensate at a higher scale $(F_{\pi}^{TC} \sim 250 GeV \sim \Lambda_{TC})$

Weinberg 78, Susskind 78

< □ > < 同 > < 三 >

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Extended Technicolor

- Add interactions between SM quarks and techni-quarks at some high scale Λ_{ETC}
- Get SM quark mass terms in effective low energy lagrangian:

Quark Masses
$$\frac{\langle \overline{\Psi}\Psi \rangle_{ETC} \overline{\psi}\psi}{\Lambda_{ETC}^2}$$

Dimopoulos, Susskind 79 - Eichten, Lane 80

< 日 > < 同 > < 三 > < 三 >

The Standard Model Technicolor **Technicolor Problems** Walking Technicolor Phase Diagram

Flavour Changing Neutral Currents

• But also get FCNC term:

- Naively scaling up QCD leads to a problem:
- Need large $\Lambda_{ETC} \sim 1000 \, TeV$ to suppress Flavour Changing Neutral Currents
- $\bullet\,$ But this gives a strange quark mass that is \sim 50 times too small

(日) (同) (日) (日) (日)

The Standard Model Technicolor **Technicolor Problems** Walking Technicolor Phase Diagram

S, T Parameters

- S,T parameters measure deviation from SM caused by new physics
- Naive QCD scaling gives $\sim 2\sigma$ disagreement with experiment
- Perturbative estimate: $S = \frac{1}{6\pi} \frac{N_f}{2} d(R) = 0.16$

Image: A math a math

Particle Data Group 2008

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Walking Technicolor Cartoon

Liam Keegan MCRG Minimal Walking Technicolor

イロト イポト イヨト イヨト

э

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Walking Technicolor Quark Masses

$$\langle \overline{\Psi}\Psi \rangle_{ETC} = \langle \overline{\Psi}\Psi \rangle_{TC} \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} \gamma(\mu) d\ln\mu\right)$$

• In QCD this gives logarithmic enhancement:

$$\langle \overline{\Psi}\Psi\rangle_{\textit{ETC}} = \log\left(\frac{\Lambda_{\textit{ETC}}}{\Lambda_{\textit{TC}}}\right)^{\gamma} \langle \overline{\Psi}\Psi\rangle_{\textit{TC}}$$

• But a walking coupling gives power enhancement:

$$\langle \overline{\Psi}\Psi
angle_{\textit{ETC}} = \left(rac{\Lambda_{\textit{ETC}}}{\Lambda_{\textit{TC}}}
ight)^{\gamma} \langle \overline{\Psi}\Psi
angle_{\textit{TC}}$$

< ロ > < 同 > < 回 > < 回 >

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Walking Technicolor S Parameter

- Walking seems to reduce S parameter compared to running case.
- And other sectors of the theory, such as new leptons, are expected to contribute negatively

Dietrich, Sannino, Tuominen [arXiv:hep-ph/0505059]

• But ideally this also needs to be studied non-perturbatively

<ロト < 同ト < 三ト

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Phase Diagram

 MWTC: 2 dirac fermions transforming under the adjoint representation of SU(2)

Saninno, Tuominen [arXiv:hep-ph/0405209]

ъ

<ロト < 同ト < 三ト

The Standard Model Technicolor Technicolor Problems Walking Technicolor Phase Diagram

Scheme dependence

- Walking/Running of coupling is scheme dependent
- Want to measure physical, scheme independent quantities:
 - Existence of fixed point
 - Anomalous mass dimension at the fixed point

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(0)}$$
 , $\{g_i^{(0)}\}$

Image: A = A

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(1)} = \hat{\xi}^{(0)}/2$$
 , $\{g_i^{(1)}\}$

< □ > < □ >

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(2)} = \hat{\xi}^{(0)}/2^2$$
 , $\{g_i^{(2)}\}$

< 1 →

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Wilson Renormalisation Group

- Spatially average locally / integrate out UV modes
- Leaves IR physics intact
- Look at evolution of all couplings

$$\hat{\xi}^{(3)} = \hat{\xi}^{(0)}/2^3$$
 , $\{g_i^{(3)}\}$

A D

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Monte Carlo Renormalisation Group

< 1 →

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

2–Lattice Matching

Г											Г
Г											Г
Г											
Г											Г
Г											
Г											
Г										- -	
Г											Г
Г											
Г											
Γ	Γ.	_	_	17	_	Γ.	_	Γ.	_	_	Γ.
Г											

			_

Liam Keegan MCRG Minimal Walking Technicolor

イロト イポト イヨト イヨト

æ

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

2–Lattice Matching

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

2–Lattice Matching

<ロ> <同> <同> < 同> < 同>

э

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Lattice Blocking Transform

• Free parameter α adjusts RG blocking transform

 Optimise α to approach RT quickly such that subsequent steps give the same matching

$$V_{n,\mu} = \operatorname{Proj}\left[(1-\alpha)U_{n,\mu}U_{n+\mu,\mu} + \frac{\alpha}{6}\sum_{\nu\neq\mu}U_{n,\nu}U_{n+\nu,\mu}U_{n+\mu+\nu,\mu}U_{n+2\mu,\nu}^{\dagger}\right]$$

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

MCRG Key Points

- Find pairs of couplings with identical blocked actions, whose correlation lengths differ by a factor 2
- Identify matching actions by comparing observables on blocked lattices (plaquette, 6-link and 8-link loops)
- Always match between lattices with the same number of points to minimise finite size errors
- Optimise α to approach the RT quickly so that subsequent steps give the same matching

Hasenfratz [arXiv:hep-lat/0907.0919]

MCRG **Pure Gauge** Mass Anomalous Dimension Results Coupling Results

Pure Gauge Simulation

- Simulated on lattices of size L=32,16
- Allows for 3 matchings; 2(1), 3(2), 4(3) steps on the 32⁴(16⁴) lattices
- Optimise α such that these steps predict the same matching coupling
- Repeated this for three different blocking transforms, and on 16(8) lattices

MCRG **Pure Gauge** Mass Anomalous Dimension Results Coupling Results

Plaquette Matching

◆ 同 ▶ ◆ 目

MCRG **Pure Gauge** Mass Anomalous Dimension Results Coupling Results

Alpha Optimisation

Liam Keegan MCRG Minimal Walking Technicolor

< □ > < □ >

- (E

MCRG **Pure Gauge** Mass Anomalous Dimension Results Coupling Results

Pure Gauge Bare Step Scaling

Liam Keegan MCRG Minimal Walking Technicolor

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Phase diagram of full theory

A ▶

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Phase diagram of full theory

◆ 同 ▶ ◆ 目

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Simulation details

- Simulated on lattices of size L=16,8
- Allows for 2 matchings; 2(1), 3(2) steps on the 16⁴(8⁴) lattices
- Keep β constant, match in bare mass
- $\bullet\,$ Optimise α such that these all agree to find continuum physics

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Plaquette Matching

- 16⁴ blocked two/three times
- Single mass m = -1.05
- 8⁴ blocked one/two times
- Many masses -1.15 < m' < -0.90

< /□ > < 3

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Alpha Optimisation

э

< 日 > < 同 > < 三 > < 三 >

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

PCAC Masses

- Have matching bare masses, but additively renormalised quantities
- So need to convert to PCAC masses to be able to extract anomalous dimension

э

Image: A = A

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Anomalous Dimension

 Extract γ from ratio of masses:

•
$$m' = 2^{\gamma+1}m$$

• Linear fit gives
$$\gamma = -0.01(13)$$

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Phase diagram of full theory

▲ 同 ▶ → ● 三

ъ

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Simulation details

- Simulated on lattices of size L=16,8
- Allows for 2 matchings; 2(1), 3(2) steps on the 16⁴(8⁴) lattices
- $\bullet\,$ Tune all PCAC masses to zero, then match in $\beta\,$
- $\bullet\,$ Optimise α such that these all agree to find continuum physics

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Plaquette Matching

- 16⁴ blocked two/three times
- Single $\beta = 2.40$
- 8⁴ blocked one/two times
- Many β' values

◆ 同 ▶ ◆ 目

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Alpha Optimisation

- 4 同 6 4 日 6 4 日 6

э

MCRG Pure Gauge Mass Anomalous Dimension Results Coupling Results

Coupling Step Scaling

- FP would be indicated by change of sign in s_b
- Data compatible with change of sign
- But errors too large to identify a FP

э

▲ 同 ▶ → ● 三

Conclusion Results in Context

MCRG Conclusion

- $\bullet\,$ Mass anomalous dimension is small, and independent of $\beta\,$
- We find $\gamma = -0.01(13)$
- Running of the coupling is slow, and consistent with a fixed point
- But our data cannot distinguish the two cases

< 🗇 > < 🖃 >

Conclusion Results in Context

Results in Context

Liam Keegan MCRG Minimal Walking Technicolor

< □ > < 同 > < 回 >

ъ

All-order prediction Massless Tuning PCAC Mass MWT Pheno

Prediction for anomalous dimension I

Conjectured all orders beta function

$$\beta(g) = \frac{g^3}{(4\pi)^2} \frac{\beta_0 - \frac{2}{3}T(r)N_f\gamma(g^2)}{1 - \frac{g^2}{8\pi^2}C_2(G)\left(1 + \frac{2\beta'_0}{\beta_0}\right)}$$

$$\beta_0 = \frac{11}{3}C_2(G) - \frac{4}{3}T(r)N_f, \quad \beta'_0 = C_2(G) - T(r)N_f$$

- $\bullet\,$ For MWT this predicts anomalous dimension $\gamma=3/4$ at fixed point
- This is a scheme-independent quantity at a fixed point

Ryttov, Sannino [arXiv:0711.3745]

All-order prediction Massless Tuning PCAC Mass MWT Pheno

Prediction for anomalous dimension II

Conjectured all orders beta function

$$\beta(g) = -\frac{g^2}{6\pi} \frac{11C_2(G) - 2T(r)N_f \left(2 + \Delta_R \gamma(g^2)\right)}{1 - \frac{17g}{22\pi}C_2(G)}$$

$$\Delta_R = 1 + \frac{7C_2(G)}{11C_2(R)}$$

- For MWT this predicts anomalous dimension $\gamma = 11/24 \simeq 0.458$ at fixed point
- This is a scheme-independent quantity at a fixed point

Pica, Sannino [arXiv:1011.3832]

All-order prediction Massless Tuning PCAC Mass MWT Pheno

Measured PCAC Masses

Critical bare mass measurements

Liam Keegan MCRG Minimal Walking Technicolor

æ

All-order prediction Massless Tuning PCAC Mass MWT Pheno

Interpolation in Beta

Critical bare mass interpolation

Liam Keegan MCRG Minimal Walking Technicolor

All-order prediction Massless Tuning PCAC Mass MWT Pheno

Massless Runs

Critical bare mass measurements

Liam Keegan MCRG Minimal Walking Technicolor

э

All-order prediction Massless Tuning PCAC Mass MWT Pheno

PCAC Mass

PCAC mass is defined using the Partially Conserved Axial Current:

< □ > < 同 > < 回 >

$$f_{A}(x_{0}) = -1/12 \int d^{3}y \, d^{3}z \, \langle \overline{\psi}(x_{0})\gamma_{0}\gamma_{5}\tau^{a}\psi(x_{0})\overline{\zeta}(y)\gamma_{5}\tau^{a}\zeta(z) \rangle$$
$$f_{P}(x_{0}) = -1/12 \int d^{3}y \, d^{3}z \, \langle \overline{\psi}(x_{0})\gamma_{5}\tau^{a}\psi(x_{0})\overline{\zeta}(y)\gamma_{5}\tau^{a}\zeta(z) \rangle$$

All-order prediction Massless Tuning PCAC Mass MWT Pheno

PCAC Mass Finite Size Effects

PCAC mass vs t; beta=2.25; m0=-1.10

Liam Keegan MCRG Minimal Walking Technicolor

All-order prediction Massless Tuning PCAC Mass MWT Pheno

PCAC Mass Finite Size Effects

PCAC mass vs t; beta=2.25; m0=-1.10

Liam Keegan MCRG Minimal Walking Technicolor

э

All-order prediction Massless Tuning PCAC Mass MWT Pheno

PCAC Mass Finite Size Effects

PCAC mass vs t; beta=2.25; m0=-1.10

Liam Keegan MCRG Minimal Walking Technicolor

э

All-order prediction Massless Tuning PCAC Mass MWT Pheno

Particle content of MWT

- Fermionic content:
 - (U,D) techni-quark doublet
 - (N,E) new lepton doublet
 - composite techniquark-technigluon doublet
- Composite Higgs from techni-pion

▲ 同 ▶ → ● 三

All-order prediction Massless Tuning PCAC Mass MWT Pheno

- details depend on choice of ETC model
- then construct low energy EFT for LHC

Frandsen, Sannino, et. al. [arXiv:0710.4333v1] [arXiv:0809.0793v1]

Image: A = A

All-order prediction Massless Tuning PCAC Mass MWT Pheno

MWT Dark Matter candidate

- lightest technibaryon is a cold dark matter candidate
- TIMP: Technicolour Interacting Massive Particle
- iTIMP: lightest weak isotriplet technibaryon
- Prospects for discovery/exclusion from both dark matter experiments and LHC

Frandsen, Sannino [arXiv:0911.1570]